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Brief Comments on Perturbation Theory of a Nonsymmetric Matrix: The GF Matrix
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Perturbation theory for nonsymmetric matrices is discussed foGthenatrix for molecular vibrations. As

a simple extension of early results, two approaches are given: one a direct diagonalization of the nonsymmetric
matrix, the other a presymmetrization. Presymmetrization ofGRematrix, well known for AF, is also
described here foAG. It permits the use of standard perturbation theory for symmetric matrices. Application

of the second-order expression for th& case to the determination of the frequencies of many ozone
isotopomers is given elsewhere.

1. Introduction or matrices, respectively, and consider the nondegenerate case.
Making the customary expansion in a small parameterhich

Perturbation theory for the nonsymmeti@&F matrix for . .
is later replaced by unity, we have

molecular vibrations is well known in the literature for the
F-matrix1~3 In an almost forgotten article, a rigorous first- and
second-order treatment for tl@matrix was given by Edgefl.

An approximate derivation for th&G-perturbation is given in
standard texts for the first-order cas&While it does contain

a tacit assumption that the formalism for nonsymmetric matrices o WL 2.2
is the same as that for symmetric matrices, the final result for X=X F e+ exT 4 e (2.4)
the first-order term is the same as that obtained by Edggiir

interest in the topic arose in a calculation of many unknown The usual equating of equal powerseofields

frequencies of ozone isotopoméfer use in a kinetic study of

A=A+ eV (2.2)

L=+ D+ P 4 o (2.3)

the “mass-independent” isotope effect in ozone formation. A% = A% (2.5)
Using the simple compact formalism of more recent perturba-

tion theory?-13 the derivation in ref 4 is readily extended. The — 29X O = — V)X (2.6)

treatment for botlAG andAF is described below in two ways,

one of which involves a direct diagonalization of the nonsym- (A° — j’?)xi(Z) _ /li(z)xio + li(l)xi(l) _ in(l) 2.7)

metric matrice%(sections 1, 3, and 5). The other is based on a
presymmetrization oGF (sections 4 and 5), both fakxF and
AG. Presymmetrization for thaF case, well known in the
literaturel—3 is given for comparison, while that f&G appears

to be new. The present brief comments are intended to

reexamine and extend the early resfilts. °Tx]° X?Txi -1 2.8)

2. Theory T . .
) ) ) ~ wherex’' is a row vector corresponding to the column matrix
A perturbation theory for nonsymmetric matrices or, in x°. It follows that

general, for operators which are not self-adjoint, is straightfor-
ward. For comparison it is useful to consider first the well known X10TXI(1) — XIOTXI(Z) =..=0 (2.9)
elementary perturbation theory for the symmetric or self-adjoint
case, and then the very minor modification needed to extend it
to the nonsymmetric case.We ltdenote a symmetric matrix

or self-adjoint operator with eigenvectogawhose columns form

a matrixX and with eigenvalueg;, the elements of a diagonal
matrix A.

The x’ form an orthonormal set of eigenvectors, as in eq 2.8
below, and forx; we use the convenient linear normaliza-
tiont®14.15present in the second part of eq 2.8:

Application ofx,f’T to the left of eqs 2.6 and 2.7, taking into
account the symmetric nature AP, yields

A0 =T (2.10)

(2) _ OTy /(1)

Application of xi-"T, j = i, to the left of eq 2.6 yields the

Since the present application is to vibrations and involves
: alongx’

real matricesA, we shall use the transpo#é of A rather than ~ component ot
referring to the adjoint. For symmetric matix A = AT. We

(o] 0,,0T (1) oT
let A° andV denote the unperturbed and perturbation operators (/1]' — 4 )X] X1( ) =X v (2.12)
" Part of the special issue “William H. Miller Festschrift". The vectord" has no component along, as seen in eq 2.9,
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and so from eq 2.12 we have and G, egs 2.17 and 2.18 can be simplified so that only one

type of eigenvector® or y°, is needed per equation, instead of

oT, 0
X VX X% andye.
X =— X (2.13)
== 3. Application to the GF Matrix
. The above results are immediately applicable to the eigen-
and eq 2.11 then yields the standard result{ot value equation for th&F matrix
o <K VR0VX) GFX = XA orGFL =LA (3.1)
A=) ————— 2.14
' & 70— 20 ( ) where we have written th¥ asL in the second equation, using
i i

the notation that is standard in the molecular vibration literdture.

The special property of symmetric natureAsfin proceeding N €d 3.1, A is a diagonal matrix consisting of the desired
from egs 2.6 and 2.7 to egs 2.10 and 2.14 is reflected in the €igenvaluesi;, and X is a matrix whose columns are the
orthonormality of thec's. To be sure, the use of that property €igenvectorsq. The J; are 412, where they; are the desired
could have been delayed in the derivation, as later in section 5, vibration frequencies of the molecule. Sin¢edenotesAF or
by using a resolvent formalism, but at some point the symmetric AG in the perturbation expressions in the preceding equations,

nature ofA was used to obtain eqs 2.10 and 2.141&? and egs 2.17 and 2.18 are immediately applicable, and so one has
JIc) the appropriate first or higher order or degenerate (section 5)

i :
We consider next the case of a nonsymmetric matyiwhich perturbation theo_ry. R
These expressions can be simplified to reduce the two sets

in our case will be th&F matrix. For a nonsymmetrid there of eigenvectorsx® and y", fo one set, using the specific
|szn)a very simple .expe.dlent V\.Ih'Ch permRS), li( )’. and h|gher. propgrty that th’ie(IG and IIZ matrices can be gimultanrt)aously
4" to be determined |mm_ed|ately from the Series of equations diagonalized, following the ideas in ref 19. This latter diago-
such a§ eqs 2:52.7 apd higher orders: A remprocal bgs!s set nalization is related to current methods for obtaining the
y,, which forms a biorthogonal set of eigenvectrs® is eigenvalues of th&F matrix based on a factorization &f to
introduced, and we again use a linear normalizatiorxfor form the product of a matrix and its transpé&én the following,
we use the familiar notation of ref L, instead oiX. Following
T,0 _ T, — T (D) — 0T, (D) — ... — - . L . :
YO =0, ¥ % =1, so thay) x5~ =y %~ = 12015) Wilson et all® the matrix L is introduced to diagonalize
’ simultaneously the symmetric matric€sandF, giving rise to

where eacly” is a left eigenvector oh° (which in our case is  the normal coordinates for the vibrations:

the unperturbedGF matrix, GOF°), the x” remain the right
eigenvectors. As such, thé become the right eigenvectors of

the transposeA°”, and have the same eigenvalugsas A°:
16,17

LTFL = A, LOFL°=A° (3.2)

L'GL=1,LG* L= (3.3)

wherel is the unit matrix. Equations 3.2 and 3.3 lead to

ATy = A%yP (2.16)
GFL =LA,LL"=G (3.4)
Operating on the left of egs 2.6 and 2.7 W instead of and
xi"T, leads to the counterpart of eqs 2.10 and 2.11:
GoFL®=L°A% L°LT=G° (3.5)

A=y = (YTVX), AP =y (2.17)
Thereby, the. which diagonalizes simultaneously the symmetric
Operating on the left of eq 2.6 hﬁT instead of byxj"T,j Z 1, matricesF and G is clearly from eq 3.4 not an orthogonal

together with the last half of eq 2.17, leads to the counterpart matrix, i.e.,LL T = I, and a similar remark applies from eq 3.5

of eq 2.14 to L°. We also note that the biorthogonality ¥f and YT, in
T . o o section 2, i.e.,Y°TX° = |, now corresponds to the relation
o <OTVRIOTVR)  _(YTVX);(YTVX), (Loie=1.
A7 = = (2.18) For the perturbatiodG of the G matrix, we have

20— 20

1= i i

700

IE3]

V = (AG)F° (3.6)

Diagonal and off-diagonal elements of the matfiX'VX° are ) o )
The terms in egs 2.17 and 2.18 contain, in the notation of the

seen to occur in eqs 2.17 and 2.18.

Two sets of eigenvectorg’ and y°' are clearly needet,
whereas in the symmetric case onfyand its transpose’’
were required. In generak’ andy’ are different vectors. For

present section, diagonal and off-diagonal elements of a matrix
(LO~YAG)FOLO. If we rewrite the second half of eq 3.2, using
eq 3.6, ag°L° = (L°M)~1A¢°, then the AG)F°L® in eqgs 2.17
and 2.18 becomesAG)(L°")"1A° and we obtain

example, while’ andy?" are biorthogonal? andx’" are seen
later not to be orthonormal. There is clearly, nevertheless, a (3.7)
strong parallelism between egs 2.10 and 2.14 and eqgs 2.17 and

2.18. This parallelism extends (as in section 5) equally to higher- Thereby, instead of the two sets of eigenvectors only [t ¢
order perturbation theory and to degenerate perturbation theory,and its transpose€7)~* appear. Thel(°")~! symbol in eq 3.7
and so the methods derived for the symmetric operators areis less compact than its equivaleit in section 2 (the right-
again immediately adaptable to a nonsymmetric matrix or hand side of eq 3.7 would now re@"(AG)Y°A°), though is
operatorA. Further, because of the special propetfied F more familiar in the vibrations literature.

(L) (AG)FL = (L) (AG)(L") A
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Similarly, for the perturbation of the matrix,V now denotes can be rewritten in a more symmetric way as
GPAF, so the elements of the matrix9) ~1G°(AF)L° are needed
for egs 2.17 and 2.18. Using the expressions in egs13%,{G° A =22+t AMALO) THAG) (L) TAY2 4+
— T
= LO°T. Thus, trii[Aoll2(Lo)—1(AG) (LoT)—leuz]TS %
(LY G (AF)L° = LT (AF)L® (3.8) [AALY) HAG)LT) A (3.12)
We may conclude from eqgs 2.17 and 2.18 and eqs 3.7 andt0 which we retum in the next section.
3.8 that for the perturbation of th® matrix we have 4. An Alternative Approach, Presymmetrization
1= 1°+ [(Lo)_l(AG)(LOT)_lAO]~- + We next consider a different approach, a presymmetrization,
A N - — to the perturbation theory faBF, one which has been used in
[(L°) (AG)(L®) "AT;UL) (AG)(L™) A% the literaturé=3 for AF, though not to our knowledge, fa&xG.
0 0 (3.9) This presymmetrization foAF is a consequence of introducing
s A — j‘j equations such as egs 3.2 and 3.3, in contrast W&h This
alternative method foAF is based on converting the problem
For the perturbation of thE matrix we have to that of diagonalization of a related symmetric matri%.In
that case the standard perturbation formalism for symmetric
[|_°T(A|:)|_"]ij[|_°T(A|:)|_°]J.i matrices immediately applies. This method has proved to be
A=A+ [LOT(AF)LO]” + Z eminently practical for th& matrix, and a related approach is
= 1i° — A0 used in the literature for diagonalizing tl&&F matrix itself,
: (3.10) without the perturbation asped&To this end, a matrixC is
defined relatingL to L°

Equation 3.10 for theAG case has been applied to the
calculation of the frequencies of many isotopomers of ozone in L=L°C (4.2)
a treatment of mass-independent isotope effe¢tor that ) ) )
purpose egs 2.17 and 2.18 sufficed, with= AG.)" It reduced whereC is an or_thogonal matrix becagse it transforms_ one set
the errors of calculating some twenty-six unknown frequencies of normal coordlngtes to anothemhe eigenvalue equation, eq
of the isotopomers to about 1 ci(30 GHz). The second- 3.1, after multiplying on the left byl(°)~! can then be written
order term was needed only for the asymmetric isotopomers @S
XYZ, as the first-order expression vanished in the unusual 1
formalism used. This accuracy sufficed for the kinetic purposes [(L°)GFL]IC=CA (4.2)
needed, namely for the densities of states and zero-point energie
of the ozone isotopomers.

Some comment on why the first-order perturbation vanished
is perhaps of_ interest because of its novelty, though this point (Lo)—lGF Lo= (LO)—1G0F0L0 + (Lo)—lGo(AF)Lo:
is not immediately relevant for the present paper: The unper- R o o
turbed G matrix, G°, used in ref 7 was not that of an actual A"+ L7 (AF)L” (4.3)
symmetric bent molecule XYX, but rather was that of a fictitious
one XYZ containing the masses of X, Y, and Z but for which
oneG-matrix element was deleted 6= Gs;) in the notation
of ref 3, p 243. This deletion permitted the same factorization
of the 3 x 3 GF matrix for the asymmetric XYZ into the two
blocks, 2x 2 and 1x 1, as that found for a symmetric molecule, 0 oT, _
but with the actual masses. This omittedsGerved as the [A°+ LT(ARLTC =CA (4.4)

perturbationV. Using symmetry arguments, the first-order The standard perturbation theory for symmetric matrices is then
perturbation was shown to vanish. An off-diagonal matrix ysed to obtain a perturbation expression/ofor this case- 3
element containing G did not vanish, again by symmetry, and For this same approach, but applied to perturbation of the
so the second-order perturbation term was proportional#§3G  G-matrix, AG, we consider
In the work it was assumed that isotogshiftsare insensitive
to anharmonicities. (LY IGFL°= (L9 'G°F°L°+ (L% HAG)F°L°=

It is useful, for comparison with the results derived in the 0 oy—1 0T\—1A0
next section, where a presymmetrization is used, to rewrite eq AT+ (L) (AG)LT) “A” (4.5)

3.10 as a trace, the trace meaning here thatithediagonal  \here eq 3.5 was again introduced. Thus, from eq 4.2 we have
element is selectett. We then have

This eqguation is converted to a symmetrized operator equation
using

where eqgs 3.5 and 3.8 were introduced. Thus, the diagonalization
of (L9 ~IGFL?, obtained by solving eq 4.2, is seen in eq 4.3 to
be equivalent to the diagonalization of a symmetric matrix,
namely the matrix on the extreme right-hand side of eq 4.3:

[A°+ (L9 HAG)(LH) *AJC =CA (4.6)

A=A+t (L) HAG) L) A+ , : o
1 ol . 0T 1 0T -1 10 However, the matrix on the left of eq 4.6 is not symmetric, in
tri[(L) T (AG)L) "ATS(LY) (AG)(L”) "A® (3.11) contrast with theAF case, eq 4.4. (Perhaps for this reason, a
treatment parallel to that for eq 4.4 does seem to have appeared

whereS = Q°(G°F° — 1;)71Q°, Q° being an operator which in the literature.) Nevertheless, eq 4.6 can readily be written in
projects onto the subspace that is the orthogonal complementa symmetric form by minor manipulation: Multiplying on the
to x°, i.e., to L. left by A°Y2we have

Because\° andS commute (both are functions G°F°) and
because the trace is invariant to a cyclic permutation, eq 3.11[A° + {(L°) *A°Y3T(AG)(L°) *A°Y4D = DA 4.7)
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whereD = A°Y2C, The matrix on the left-hand side of eq 4.7
is now symmetric, and so conventional perturbation theory can

be applied. Using standard perturbation theory, the perturba’uonAs a normalization fox we again use the linear relation eq

result obtained from eq 4.7 is readily seen to be the same as ) . .
that given in eq 3.12. 28 and again use the biorthogonal set of eigenvecfoand
y; introduced earlier.

We next comment briefly on a perturbation theory oG S ) )
in refs 5 and 6. The transpose matFi§ was considered there, The projection operatot8® andQ® operating on an arbitrary
vector® can be written in terms of this biorthogonal basis set

as an alternative to considering left eigenvector$Gét The
matrix equation and that for the unperturbed problem are now, as
in present notation,

% =Px (5.4)

P°D = (T 0)x, Q%> = Y (@) (5.5)

FG(LT) = (LA, FFGYLY) = (L) *A° (4.8) Z
They noted that where the parentheses denote a scalar product. One can verify,
thereby, thatP®2 = P°, Q°2 = Q°, and P°Q° = Q°P° = 0.

LOTFOGOLT) T =A° (4.9) Applying y" to the left of eq 5.1 and using eq 5.5 we obtain
and so
A =X+ yVx (5.6)

LFGLN =A%+ LTFYAG) (LY (4.10)
Using egs 5.2 and 5.5, the first few terms in the series for the
perturbed eigenvalues, namely eqs 2.17 and 2.18, are again
obtained, but now the higher-order terms are also obtained.

The extension to the degenerate case is also straightforward
using the resolvent formalism applied to the nonsymmetric
case: Using the projection operat®roperating on the vector

It was then tacitly assuméd, perhaps based on the known x?, we have
result in ref 4, that the standard first-order perturbation theory
for symmetric matrices can be used for the nonsymmetric matrix
A° 4+ LOTFO(AG)(L°T)tin eq 4.11. The final answer is indeed

correct. The more rigorous derivation is, nevertheless, given in

Multiplying the first equation in eq 4.8 bl°T on the left, and
introducing eq 4.10, we have, because= F°,

o oTo oY=y ofp Ty=1_ oT Ty—1
(AT LTFAGL T L) =LY A, 1)

APX, = (A° + V)P, = 4P, S

ref 4 or in either of the derivations given above.

5. Higher Order and Degenerate Perturbation Theory

The results obtained in sections 2 and 3 are immediately

wherea is a degeneracy index (= 1, ... ,m) in the unperturbed
subspace®. Thereby!3

PPAPP*C, = ,,PPPPC, (5.8)

extended in several respects using a resolvent formalism. We

comment briefly on the extension here, denotingRSyand P

P°PP* is positive definite, and eq 5.8 is a generalized eigenvalue

the projection operators of a vector onto the unperturbed spaceeduation. On multiplication on the left by a member of the

Qo of any given eigenvalug® and onto the perturbed spa@e
respectively. The projection operator complementaryPtas
denoted by the customa@®. We consider first the nondegen-
erate case. The spa€¥ then consists of vectors proportional
to x* and Q consists of vectors proportional ta. In the
interests of brevity we revert to th°, X andYT notation. The
desired eigenvalug; is obtained fromP from

(A°+V)P= AP (5.1)
andP is given in the resolvent formalism in terms Bf, Q°,
andV byl1-1322

P=P°+ § (—1)"'=SVSey v S

n=

(5.2)

where the restriction on the second sunkjiis 0, Y1tk = n,
and where, as noted earlier,

S = —PPandS= Q"ﬁQO forS= (5.3)

No assumption regarding symmetric natureAdfis made in
obtaining egs 5.2 and 5.3.

The perturbed eigenvectgrcorresponding to the eigenvalue
Ji is obtained fronx via P:

reciprocal basis sg{}f one obtains a series of equations, such
that det P°APP° — Ji,P°PP°) = 0 in this representation.
Introducing the expressions given earlier for the expansion of
P, one obtains théd,, to the desired order of approximation.
Another expansion has also been givén.

6. Discussion

In the present article, prompted by a different probfeha,
simple extension is given of early literature resditsusing a
well established formalisir.12 A simple direct method for
diagonalization of nonsymmetric matrices has been applied to
the perturbation theory for bothG andAF. Independently of
this derivation, a presymmetrization of th@F matrix is
introduced for theAG case (it had been for th&F case), so
permitting as an alternative the standard method for perturbation
of symmetric matrices to be applied.
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