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Perturbation theory for nonsymmetric matrices is discussed for theGF matrix for molecular vibrations. As
a simple extension of early results, two approaches are given: one a direct diagonalization of the nonsymmetric
matrix, the other a presymmetrization. Presymmetrization of theGF matrix, well known for∆F, is also
described here for∆G. It permits the use of standard perturbation theory for symmetric matrices. Application
of the second-order expression for the∆G case to the determination of the frequencies of many ozone
isotopomers is given elsewhere.

1. Introduction

Perturbation theory for the nonsymmetricGF matrix for
molecular vibrations is well known in the literature for the
F-matrix.1-3 In an almost forgotten article, a rigorous first- and
second-order treatment for theG-matrix was given by Edgell.4

An approximate derivation for the∆G-perturbation is given in
standard texts for the first-order case.5,6 While it does contain
a tacit assumption that the formalism for nonsymmetric matrices
is the same as that for symmetric matrices, the final result for
the first-order term is the same as that obtained by Edgell.4 Our
interest in the topic arose in a calculation of many unknown
frequencies of ozone isotopomers7 for use in a kinetic study of
the “mass-independent” isotope effect in ozone formation.8

Using the simple compact formalism of more recent perturba-
tion theory,9-13 the derivation in ref 4 is readily extended. The
treatment for both∆G and∆F is described below in two ways,
one of which involves a direct diagonalization of the nonsym-
metric matrices9 (sections 1, 3, and 5). The other is based on a
presymmetrization ofGF (sections 4 and 5), both for∆F and
∆G. Presymmetrization for the∆F case, well known in the
literature,1-3 is given for comparison, while that for∆G appears
to be new. The present brief comments are intended to
reexamine and extend the early results.4

2. Theory

A perturbation theory for nonsymmetric matrices or, in
general, for operators which are not self-adjoint, is straightfor-
ward. For comparison it is useful to consider first the well known
elementary perturbation theory for the symmetric or self-adjoint
case, and then the very minor modification needed to extend it
to the nonsymmetric case.We letA denote a symmetric matrix
or self-adjoint operator with eigenvectorsxi whose columns form
a matrixX and with eigenvaluesλi, the elements of a diagonal
matrix Λ.

Since the present application is to vibrations and involves
real matricesA, we shall use the transposeAT of A rather than
referring to the adjoint. For symmetric matrixA, A ) AT. We
let Ao andV denote the unperturbed and perturbation operators

or matrices, respectively, and consider the nondegenerate case.
Making the customary expansion in a small parameterε, which
is later replaced by unity, we have

The usual equating of equal powers ofε yields

The xi
o form an orthonormal set of eigenvectors, as in eq 2.8

below, and forxi we use the convenient linear normaliza-
tion10,14,15present in the second part of eq 2.8:

wherexi
oT is a row vector corresponding to the column matrix

xi
o. It follows that

Application of xi
oT to the left of eqs 2.6 and 2.7, taking into

account the symmetric nature ofAo, yields

Application of xj
oT, j * i, to the left of eq 2.6 yields the

component ofxi
(1) alongxj

o

The vectorxi
(1) has no component alongxi

o, as seen in eq 2.9,† Part of the special issue “William H. Miller Festschrift”.
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A ) Ao + εV (2.2)

λi ) λi
o + ελi

(1) + ε
2λi
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o ) δij xi
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and so from eq 2.12 we have

and eq 2.11 then yields the standard result forλi
(2):

The special property of symmetric nature ofAo in proceeding
from eqs 2.6 and 2.7 to eqs 2.10 and 2.14 is reflected in the
orthonormality of thexo’s. To be sure, the use of that property
could have been delayed in the derivation, as later in section 5,
by using a resolvent formalism, but at some point the symmetric
nature ofA was used to obtain eqs 2.10 and 2.14 forλi

(1) and
λi

(2).
We consider next the case of a nonsymmetric matrixA, which

in our case will be theGF matrix. For a nonsymmetricA there
is a very simple expedient which permitsλi

(1), λi
(2), and higher

λi
(n) to be determined immediately from the series of equations

such as eqs 2.5-2.7 and higher orders: A reciprocal basis set
yi

o, which forms a biorthogonal set of eigenvectors,16-18 is
introduced, and we again use a linear normalization forxi

where eachyi
oT is a left eigenvector ofAo (which in our case is

the unperturbedGF matrix, GoFo), the xi
o remain the right

eigenvectors. As such, theyi
o become the right eigenvectors of

the transpose,AoT, and have the same eigenvaluesλi
o as Ao:

16,17

Operating on the left of eqs 2.6 and 2.7 byyi
oT, instead of

xi
oT, leads to the counterpart of eqs 2.10 and 2.11:

Operating on the left of eq 2.6 byyj
oT instead of byxj

oT, j * i,
together with the last half of eq 2.17, leads to the counterpart
of eq 2.14

Diagonal and off-diagonal elements of the matrixYoTVXo are
seen to occur in eqs 2.17 and 2.18.

Two sets of eigenvectorsxi
o and yi

oT are clearly needed,18

whereas in the symmetric case onlyxi
o and its transposexi

oT

were required. In general,xi
o andyi

o are different vectors. For
example, whilexi

o andyj
oT are biorthogonal,xi

o andxj
oT are seen

later not to be orthonormal. There is clearly, nevertheless, a
strong parallelism between eqs 2.10 and 2.14 and eqs 2.17 and
2.18. This parallelism extends (as in section 5) equally to higher-
order perturbation theory and to degenerate perturbation theory,
and so the methods derived for the symmetric operators are
again immediately adaptable to a nonsymmetric matrix or
operatorA. Further, because of the special properties19 of F

and G, eqs 2.17 and 2.18 can be simplified so that only one
type of eigenvector,xo or yo, is needed per equation, instead of
xo andyo.

3. Application to the GF Matrix

The above results are immediately applicable to the eigen-
value equation for theGF matrix

where we have written theX asL in the second equation, using
the notation that is standard in the molecular vibration literature.1

In eq 3.1,Λ is a diagonal matrix consisting of the desired
eigenvaluesλi, and X is a matrix whose columns are the
eigenvectorsxi. The λi are 4π2Vi

2, where theVi are the desired
vibration frequencies of the molecule. SinceV denotes∆F or
∆G in the perturbation expressions in the preceding equations,
eqs 2.17 and 2.18 are immediately applicable, and so one has
the appropriate first or higher order or degenerate (section 5)
perturbation theory.

These expressions can be simplified to reduce the two sets
of eigenvectors,xi

o and yi
oT, to one set, using the specific

property that theG and F matrices can be simultaneously
diagonalized, following the ideas in ref 19. This latter diago-
nalization is related to current methods for obtaining the
eigenvalues of theGF matrix based on a factorization ofG to
form the product of a matrix and its transpose.20 In the following,
we use the familiar notation of ref 1,L , instead ofX. Following
Wilson et al.,19 the matrix L is introduced to diagonalize
simultaneously the symmetric matricesG andF, giving rise to
the normal coordinates for the vibrations:

whereI is the unit matrix. Equations 3.2 and 3.3 lead to

and

Thereby, theL which diagonalizes simultaneously the symmetric
matricesF and G-1 is clearly from eq 3.4 not an orthogonal
matrix, i.e.,LL T * I , and a similar remark applies from eq 3.5
to Lo. We also note that the biorthogonality ofXo andYoT, in
section 2, i.e.,YoTXo ) I , now corresponds to the relation
(Lo)-1Lo ) I .

For the perturbation∆G of the G matrix, we have

The terms in eqs 2.17 and 2.18 contain, in the notation of the
present section, diagonal and off-diagonal elements of a matrix
(Lo)-1(∆G)FoLo. If we rewrite the second half of eq 3.2, using
eq 3.6, asFoLo ) (LoT)-1Λo, then the (∆G)FoLo in eqs 2.17
and 2.18 becomes (∆G)(LoT)-1Λo and we obtain

Thereby, instead of the two sets of eigenvectors only the (Lo)-1

and its transpose (LoT)-1 appear. The (LoT)-1 symbol in eq 3.7
is less compact than its equivalentYo in section 2 (the right-
hand side of eq 3.7 would now readYoT(∆G)YoΛo), though is
more familiar in the vibrations literature.

xi
(1) ) -∑

j*i

xj
oTVxi

o

λj
o - λi

o
xj

o (2.13)

λi
(2) ) ∑

j*i

(xi
oTVxj

o)(xj
oTVxi

o)

λi
o - λj

o
(2.14)

yj
oTxi

o ) δij, yi
oTxi ) 1, so thatyi

oTxi
(1) ) yi

oTxi
(2) ) ‚‚‚ ) 0

(2.15)

ATyi
o ) λi

oyi
o (2.16)

λi
(1) ) yi

oTVxi
o ) (YoTVX )ii λi

(2) ) yj
oTVxi

(1) (2.17)

λi
(2) ) ∑

j*i

(yi
oTVxj

o)(yj
oTVxi

o)

λi
o - λj

o
≡ ∑

j*i

(YoTVX )ij(Y
oTVX )ji

λi
o - λj

o
(2.18)

GFX ) XΛ or GFL ) LΛ (3.1)

LTFL ) Λ, LoTFoLo ) Λo (3.2)

LTG-1L ) I , LoTGo-1Lo ) I (3.3)

GFL ) LΛ, LL T ) G (3.4)

GoFoLo ) LoΛo, LoLoT ) Go (3.5)

V ) (∆G)Fo (3.6)

(Lo)-1(∆G)FoLo ) (Lo)-1(∆G)(LoT)-1Λo (3.7)
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Similarly, for the perturbation of theF matrix,V now denotes
Go∆F, so the elements of the matrix (Lo)-1G°(∆F)Lo are needed
for eqs 2.17 and 2.18. Using the expressions in eqs 3.5, (Lo)-1Go

) LoT. Thus,

We may conclude from eqs 2.17 and 2.18 and eqs 3.7 and
3.8 that for the perturbation of theG matrix we have

For the perturbation of theF matrix we have

Equation 3.10 for the∆G case has been applied to the
calculation of the frequencies of many isotopomers of ozone in
a treatment of mass-independent isotope effects.7 (For that
purpose eqs 2.17 and 2.18 sufficed, withV ) ∆G.)7 It reduced
the errors of calculating some twenty-six unknown frequencies
of the isotopomers to about 1 cm-1 (30 GHz). The second-
order term was needed only for the asymmetric isotopomers
XYZ, as the first-order expression vanished in the unusual
formalism used. This accuracy sufficed for the kinetic purposes
needed, namely for the densities of states and zero-point energies
of the ozone isotopomers.

Some comment on why the first-order perturbation vanished
is perhaps of interest because of its novelty, though this point
is not immediately relevant for the present paper: The unper-
turbedG matrix, Go, used in ref 7 was not that of an actual
symmetric bent molecule XYX, but rather was that of a fictitious
one XYZ containing the masses of X, Y, and Z but for which
oneG-matrix element was deleted, G13 () G31) in the notation
of ref 3, p 243. This deletion permitted the same factorization
of the 3× 3 GF matrix for the asymmetric XYZ into the two
blocks, 2× 2 and 1× 1, as that found for a symmetric molecule,
but with the actual masses. This omitted G13 served as the
perturbationV. Using symmetry arguments, the first-order
perturbation was shown to vanish. An off-diagonal matrix
element containing G13 did not vanish, again by symmetry, and
so the second-order perturbation term was proportional to (G13)2.
In the work it was assumed that isotopicshiftsare insensitive
to anharmonicities.

It is useful, for comparison with the results derived in the
next section, where a presymmetrization is used, to rewrite eq
3.10 as a trace, the trace meaning here that theii th diagonal
element is selected.21 We then have

whereS ) Qo(GoFo - λi)-1Qo, Qo being an operator which
projects onto the subspace that is the orthogonal complement
to xi

o, i.e., to (Lo)i.
BecauseΛo andScommute (both are functions ofGoFo) and

because the trace is invariant to a cyclic permutation, eq 3.11

can be rewritten in a more symmetric way as

to which we return in the next section.

4. An Alternative Approach, Presymmetrization

We next consider a different approach, a presymmetrization,
to the perturbation theory forGF, one which has been used in
the literature1-3 for ∆F, though not to our knowledge, for∆G.
This presymmetrization for∆F is a consequence of introducing
equations such as eqs 3.2 and 3.3, in contrast with∆G. This
alternative method for∆F is based on converting the problem
to that of diagonalization of a related symmetric matrix.1-3 In
that case the standard perturbation formalism for symmetric
matrices immediately applies. This method has proved to be
eminently practical for theF matrix, and a related approach is
used in the literature for diagonalizing theGF matrix itself,
without the perturbation aspects.20 To this end, a matrixC is
defined2 relatingL to Lo

whereC is an orthogonal matrix because it transforms one set
of normal coordinates to another.2 The eigenvalue equation, eq
3.1, after multiplying on the left by (Lo)-1 can then be written
as

This equation is converted to a symmetrized operator equation
using

where eqs 3.5 and 3.8 were introduced. Thus, the diagonalization
of (Lo)-1GFLo, obtained by solving eq 4.2, is seen in eq 4.3 to
be equivalent to the diagonalization of a symmetric matrix,
namely the matrix on the extreme right-hand side of eq 4.3:

The standard perturbation theory for symmetric matrices is then
used to obtain a perturbation expression forΛ for this case.1-3

For this same approach, but applied to perturbation of the
G-matrix, ∆G, we consider

where eq 3.5 was again introduced. Thus, from eq 4.2 we have

However, the matrix on the left of eq 4.6 is not symmetric, in
contrast with the∆F case, eq 4.4. (Perhaps for this reason, a
treatment parallel to that for eq 4.4 does seem to have appeared
in the literature.) Nevertheless, eq 4.6 can readily be written in
a symmetric form by minor manipulation: Multiplying on the
left by Λo1/2 we have

(Lo)-1G°(∆F)Lo ) LoT(∆F)Lo (3.8)

λi ) λi
o + [(Lo)-1(∆G)(LoT)-1Λo] ii +

∑
j*i

[(Lo)-1(∆G)(LoT)-1Λo] ij[(L
o)-1(∆G)(LoT)-1Λo] ji

λi
o - λj

o
(3.9)

λi ) λi
o + [LoT(∆F)Lo] ii + ∑

j*i

[LoT(∆F)Lo] ij[L
oT(∆F)Lo] ji

λi
o - λj

o

(3.10)

λi ) λi
o + trii(L

o)-1(∆G)(LoT)-1Λo +

trii[(L
o)-1(∆G)(LoT)-1Λo]TS(Lo)-1(∆G)(LoT)-1Λo (3.11)

λi ) λi
o + triiΛ

o1/2(Lo)-1(∆G)(LoT)-1Λo1/2 +

trii[Λ
o1/2(Lo)-1(∆G) (LoT)-1Λo1/2]TS×

[Λo1/2(Lo)-1(∆G)(LoT)-1Λo1/2] (3.12)

L ) LoC (4.1)

[(Lo)-1GFLo]C ) CΛ (4.2)

(Lo)-1GF Lo ) (Lo)-1GoFoLo + (Lo)-1Go(∆F)Lo )
Λo + LoT(∆F)Lo (4.3)

[Λo + LoT(∆F)Lo]C ) CΛ (4.4)

(Lo)-1GFoLo ) (Lo)-1GoFoLo + (Lo)-1(∆G)FoLo )
Λo + (Lo)-1(∆G)(LoT)-1Λo (4.5)

[Λo + (Lo)-1(∆G)(LoT)-1Λo]C ) CΛ (4.6)

[Λo + {(LoT)-1Λo1/2}T(∆G)(LoT)-1Λo1/2]D ) DΛ (4.7)
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whereD ) Λo1/2C. The matrix on the left-hand side of eq 4.7
is now symmetric, and so conventional perturbation theory can
be applied. Using standard perturbation theory, the perturbation
result obtained from eq 4.7 is readily seen to be the same as
that given in eq 3.12.

We next comment briefly on a perturbation theory for∆G
in refs 5 and 6. The transpose matrixFG was considered there,
as an alternative to considering left eigenvectors ofGF. The
matrix equation and that for the unperturbed problem are now,
in present notation,

They noted that

and so

Multiplying the first equation in eq 4.8 byLoT on the left, and
introducing eq 4.10, we have, becauseF ) Fo,

It was then tacitly assumed,5,6 perhaps based on the known
result in ref 4, that the standard first-order perturbation theory
for symmetric matrices can be used for the nonsymmetric matrix
Λo + LoTFo(∆G)(LoT)-1 in eq 4.11. The final answer is indeed
correct. The more rigorous derivation is, nevertheless, given in
ref 4 or in either of the derivations given above.

5. Higher Order and Degenerate Perturbation Theory

The results obtained in sections 2 and 3 are immediately
extended in several respects using a resolvent formalism. We
comment briefly on the extension here, denoting byPo andP
the projection operators of a vector onto the unperturbed space
Ωo of any given eigenvalueλo and onto the perturbed spaceΩ,
respectively. The projection operator complementary toPo is
denoted by the customaryQo. We consider first the nondegen-
erate case. The spaceΩo then consists of vectors proportional
to xi

o and Ω consists of vectors proportional toxi. In the
interests of brevity we revert to theAo, X andYT notation. The
desired eigenvalueλi is obtained fromP from

andP is given in the resolvent formalism in terms ofPo, Qo,
andV by11-13,22

where the restriction on the second sum iski g 0, ∑1
n+1ki ) n,

and where, as noted earlier,

No assumption regarding symmetric nature ofAo is made in
obtaining eqs 5.2 and 5.3.

The perturbed eigenvectorxi corresponding to the eigenvalue
λi is obtained fromxi

o via P:

As a normalization forxi we again use the linear relation eq
2.8, and again use the biorthogonal set of eigenvectorsxi

o and
yj

o introduced earlier.
The projection operatorsPo andQo operating on an arbitrary

vectorΦ can be written in terms of this biorthogonal basis set
as

where the parentheses denote a scalar product. One can verify,
thereby, thatPo2 ) Po, Qo2 ) Qo, and PoQo ) QoPo ) 0.
Applying yj

oT to the left of eq 5.1 and using eq 5.5 we obtain

Using eqs 5.2 and 5.5, the first few terms in the series for the
perturbed eigenvalues, namely eqs 2.17 and 2.18, are again
obtained, but now the higher-order terms are also obtained.

The extension to the degenerate case is also straightforward
using the resolvent formalism applied to the nonsymmetric
case: Using the projection operatorP operating on the vector
xiR

o , we have

whereR is a degeneracy index (R ) 1, ... ,m) in the unperturbed
subspaceΩo. Thereby,13

PoPPo is positive definite, and eq 5.8 is a generalized eigenvalue
equation. On multiplication on the left by a member of the
reciprocal basis setyjâ

oT, one obtains a series of equations, such
that det (PoAPPo - λiRPoPPo) ) 0 in this representation.
Introducing the expressions given earlier for the expansion of
P, one obtains theλiR to the desired order of approximation.
Another expansion has also been given.13

6. Discussion

In the present article, prompted by a different problem,7,8 a
simple extension is given of early literature results,1-4 using a
well established formalism.9-12 A simple direct method for
diagonalization of nonsymmetric matrices has been applied to
the perturbation theory for both∆G and∆F. Independently of
this derivation, a presymmetrization of theGF matrix is
introduced for the∆G case (it had been for the∆F case), so
permitting as an alternative the standard method for perturbation
of symmetric matrices to be applied.
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xi ) Pxi
o (5.4)

PoΦ ) (yi
oTΦ)xi

o, QoΦ ) ∑
j*i

(yj
oTΦ)xj

o (5.5)

λi ) xi
o + yi

oTVx (5.6)

APxiR
o ) (Ao + V)PxiR

o ) λiRPxiR
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